• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Yudian (Huang, Yudian.) | Li, Meng (Li, Meng.) | Yu, F. Richard (Yu, F. Richard.) | Si, Pengbo (Si, Pengbo.) | Zhang, Haijun (Zhang, Haijun.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

The rise of edge intelligence is driving a shift in the focus of complexity computing to the edge. Due to network and communication constraints, traditional edge computing resource scheduling solutions for industrial Internet of Thing (IIoT) usually face many challenges. For example, delayed decision release, unreasonable policy scheduling and under-utilization of resources. These problems hinder the further construction and advancement of intelligent IIoT. In order to solve these problems, this paper proposes an edge computing resource scheduling scheme based on collective learning. The process of model training is formulated as a Markovian decision process (MDP). The scheme enables edge nodes to exchange learning experiences of resource scheduling schemes, through a shared ledger on the blockchain, including parameters for initial model training. The updated policy scheduling scheme is then obtained through a collective deep reinforcement learning (CDRL) algorithm. Also, to reduce the transmission burden of the underlying industrial devices, we benefit ambient backscatter communication (AmBC) to improve the power utilization of battery. Simulation results display our proposed scheme can reduce energy consumption significantly, while decreased approximately 12.6% compare to A3C algorithm.

关键词:

collective deep reinforcement learning (CDRL) blockchain ambient backscatter communication (AmBC) industrial Internet of Things (IIoT) Mobile edge computing (MEC)

作者机构:

  • [ 1 ] [Huang, Yudian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Si, Pengbo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, F. Richard]Shenzhen Univ, Shenzhen Key Lab Digital & Intelligent Technol & S, Shenzhen 518060, Peoples R China
  • [ 6 ] [Zhang, Haijun]Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

ISSN: 2332-7731

年份: 2024

期: 2

卷: 10

页码: 634-648

8 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:465/4929173
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司