• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jinli (Zhang, Jinli.) | Wang, Zhenbo (Wang, Zhenbo.) | Jiang, Zongli (Jiang, Zongli.) | Wu, Man (Wu, Man.) | Li, Chen (Li, Chen.) | Yamanishi, Yoshihiro (Yamanishi, Yoshihiro.)

收录:

EI Scopus SCIE

摘要:

Deep generative models have been widely used in molecular generation tasks because they can save time and cost in drug development compared with traditional methods. Previous studies based on generative adversarial network (GAN) models typically employ reinforcement learning (RL) to constrain chemical properties, resulting in efficient and novel molecules. However, such models have poor performance in generating molecules due to instability in training. Therefore, quantitative evaluation of existing molecular generation models, especially GAN models, is necessary. This study aims to evaluate the performance of discrete GAN models using RL in molecular generation tasks and explore the impact of different factors on model performance. Through evaluation experiments on QM9 and ZINC datasets, the results show that noise sampling distributions, training epochs, and training data volumes can affect the performance of molecular generation. Finally, we provide strategies for stable training and improved performance for GAN models.

关键词:

Generative adversarial network Reinforcement learning Molecular generation Quantitative evaluation

作者机构:

  • [ 1 ] [Zhang, Jinli]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Zhenbo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Jiang, Zongli]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wu, Man]Keio Univ, Dept Informat & Comp Sci, Yokohama, Japan
  • [ 5 ] [Li, Chen]Nagoya Univ, Grad Sch Informat, Nagoya, Japan
  • [ 6 ] [Yamanishi, Yoshihiro]Nagoya Univ, Grad Sch Informat, Nagoya, Japan

通讯作者信息:

  • [Wu, Man]Keio Univ, Dept Informat & Comp Sci, Yokohama, Japan;;[Li, Chen]Nagoya Univ, Grad Sch Informat, Nagoya, Japan;;

查看成果更多字段

相关关键词:

来源 :

SOFTWARE QUALITY JOURNAL

ISSN: 0963-9314

年份: 2024

期: 2

卷: 32

页码: 791-819

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:590/5053853
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司