• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Haitao (Yuan, Haitao.) | Wang, Shen (Wang, Shen.) | Bi, Jing (Bi, Jing.) | Zhang, Jia (Zhang, Jia.) | Zhou, MengChu (Zhou, MengChu.)

收录:

EI Scopus SCIE

摘要:

The rapid expansion of Internet users results in an immense influx of network traffic within extensive cloud data centers. Accurate and instantaneous identification and forecasting of network traffic aid system managers in efficiently distributing resources, assessing network performance based on specific service demands and scrutinizing the health of network status. However, sources and distributions of traffic are different, which makes accurate warnings of cyberattack traffic difficult. Recently, emerging neural networks have demonstrated their efficacy in forecasting time series data of network cyberattacks. The time series has temporal and spatial features, which can be efficiently captured with Informer and convolutional neural networks (CNNs). To realize high-performance spatiotemporal detection of cyberattacks, this work for the first time designs a hybrid and spatiotemporal prediction framework, which integrates CNNs, Informer, and a Softmax classifier to realize high-classification accuracy of normal and abnormal cyberattacks. Real-life data are adopted to evaluate the proposed method, which yields significant improvement in classification accuracy over typical benchmark classification models.

关键词:

network cyberattacks Data models Telecommunication traffic neural networks spatiotemporal features Deep learning Time series analysis Cyberattack Convolution deep learning Anomaly time series detection Feature extraction

作者机构:

  • [ 1 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 2 ] [Wang, Shen]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 3 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jia]Southern Methodist Univ, Dept Comp Sci, Dallas, TX 75206 USA
  • [ 5 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

通讯作者信息:

  • [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE INTERNET OF THINGS JOURNAL

ISSN: 2327-4662

年份: 2024

期: 10

卷: 11

页码: 18035-18046

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:196/4897809
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司