• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yin, Zihao (Yin, Zihao.) | Du, Yongping (Du, Yongping.) | Liu, Yang (Liu, Yang.) | Wang, Yuxin (Wang, Yuxin.)

收录:

EI Scopus

摘要:

Sentiment analysis aims to detect the sentiment polarity towards the massive opinions and reviews emerging on the internet. With the increasing of multimodal information on social media, such as text, image, audio and video, multimodal sentiment analysis has attracted more attention in recent years and our work focuses on the text and image data. The previous works usually ignore the semantic alignment between the text and image, and cannot capture the interaction between them, which will affect the correct judgement for the sentiment polarity prediction. To resolve these problems, we propose a novel multimodal sentiment analysis model LXMERT-MMSA based on cross-modality attention mechanism. The single-modality feature is encoded by multi-layer Transformer encoder to achieve the deep semantic information implied in the text and image. Moreover, the cross-modality attention mechanism enables the model to fuse the text and image features effectively and achieve the rich semantic information by the alignment. It improves the ability of the model to capture the semantic relation between text and image. The evaluation metrics of accuracy and F1 score are used, and the experimental results on MVSA-multiple dataset and Twitter dataset show that our proposed model outperforms the previous SOTA model, and the ablation experimental results further prove that the model can make well use of multimodal features. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.

关键词:

Petroleum reservoir evaluation Semantics Image enhancement Modal analysis Social networking (online) Sentiment analysis

作者机构:

  • [ 1 ] [Yin, Zihao]Faculty of Information Technology, Beijing University of Technology, Pingleyuan 100, Beijing; 100124, China
  • [ 2 ] [Du, Yongping]Faculty of Information Technology, Beijing University of Technology, Pingleyuan 100, Beijing; 100124, China
  • [ 3 ] [Liu, Yang]Faculty of Information Technology, Beijing University of Technology, Pingleyuan 100, Beijing; 100124, China
  • [ 4 ] [Wang, Yuxin]Faculty of Information Technology, Beijing University of Technology, Pingleyuan 100, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Multimedia Tools and Applications

ISSN: 1380-7501

年份: 2024

期: 21

卷: 83

页码: 60171-60187

3 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:553/4955702
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司