• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Zhixing (Li, Zhixing.) (学者:邢李志) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE PubMed

摘要:

Nitrate is a byproduct of the anaerobic ammonium oxidation (anammox) process and is related to its electron transfer. However, little is known about the influence of nitrate on the anammox process. In this work, the biphasic effect of exogenous nitrate on the anammox process was investigated in an upflow biofilter (UBF) reactor with ammonium as the sole electron donor. The responses of anammox to increased nitrate were analyzed by one-way ANOVA test and found to be significantly different under a constant and decreased nitrite condition (p < 0.01). With a single increase in nitrate and constant ammonium and nitrite in the influent, the total nitrogen removal rate (TNRR) of anammox was uninhibited, but stoichiometry deviated and nitrate production always showed a linear decrease. In contrast, anammox exhibited a range of activity with constant ammonium and simultaneously increased nitrate and decreased nitrite in the influent, including a continuous reduction of TNRR, a nonpersistent ammonium overconsumption and a pronounced nonlinear response of nitrate production. Correlation analysis shows that the lack of ammonium overconsumption was accompanied by the disappearance of nitrate underproduction. Kinetic models of product formation were effectively used to explore the nitrate production behavior of anammox subjected to increased nitrate, and the metabolite of nitrate was divided into a growth negative coupling type and growth (partial) coupling type under a constant and decreased nitrite condition, respectively. These findings collectively suggest that nitrate has a biphasic effect on the anammox process and is correlated with the availability of nitrite. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Stoichiometry Anammox Nitrate Kinetic modeling Biphasic behavior

作者机构:

  • [ 1 ] [Li, Zhixing]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOSPHERE

ISSN: 0045-6535

年份: 2020

卷: 238

8 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:138

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:331/3900041
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司