收录:
摘要:
In this study, a 3D CoNiO2/Co core-shell structure biochar catalyst derived from walnut shell was synthesized by hydrothermal and ion etching methods. The prepared BC@CoNi-600 catalyst exhibited exceptional peroxymonosulfate (PMS) activation. The system achieved 100 % degradation of sulfamethoxazole (SMX). The reactive oxygen species in the BC@CoNi-600/PMS system included SO4 center dot-, center dot OH, and O-2(center dot-). Density functional theory calculations explored the synergistic effects between nickel-cobalt bimetallic and carbon matrix during PMS activation. The unique 3D core-shell structure of BC@CoNi-600 features an outer nickel-cobalt bimetallic layer with exceptional PMS adsorption capacity, while protecting the zero-valence Co of the inner layer from oxidation. Based on the experimental-data, machine learning modeling mechanism, and information theory, a nonlinear modeling method was proposed. This study utilizes a machine learning approach to investigate the degradation of SMX in complex aquatic environments. This study synthesized a novel biochar-based catalyst for activated PMS and provided unique insights into its environmental applications.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
年份: 2024
卷: 406
1 1 . 4 0 0
JCR@2022
归属院系: