• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mei, Shi-Jie (Mei, Shi-Jie.) | Bai, Yu -Lei (Bai, Yu -Lei.) (学者:白玉磊) | Dai, Jian-Guo (Dai, Jian-Guo.)

收录:

EI Scopus SCIE

摘要:

An experimental work on the shear strengthening of reinforced concrete (RC) beams completely wrapped by large rupture strain (LRS) FRP is presented in this paper. A total of 14 three-point bending tests were carried out on simply supported RC beams, with a focus on the impacts of the shear span-to-depth ratio (1.53, 2.25, and 3.01) and FRP reinforcement ratio (0.37 %, 0.75 %, and 1.12 %) on the shear behavior of RC beams strengthened with LRS FRP. For the beams with a median length, the ductility coefficients increased by 81 %, 154 %, and 335 % with the increase in FRP reinforcement ratio. For the long beams, the ductility coefficients increased by 116 %, 286 %, and 470 % as the FRP reinforcement ratio improved. The ductility markedly improved with the increase in shear span-to-depth ratio. PET FRP's fracture was not found at the ultimate state, and the improvement in midspan deflection after the peak state was mainly contributed by the shear deformation. The strengthened specimens exhibited a ductile shear failure mode. For the short RC beams, the shear capacity was slightly enhanced, and the ductility was not improved after being strengthened. The strengthened short RC beams still showed a brittle diagonal compression failure mode. The experimental shear contribution of PETT FRP was compared with the prediction of the existing design guidelines. Finally, an effective strain model of PET FRP, including the shear span-to-depth ratio effect, was proposed and verified with the experimental results.

关键词:

Shear span -to -depth ratio Reinforced concrete beams Shear capacity PET FRP Shear behavior

作者机构:

  • [ 1 ] [Mei, Shi-Jie]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Bai, Yu -Lei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Dai, Jian-Guo]City Univ Hong Kong, Dept Architecture & Civil Engn, Hong Kong, Peoples R China

通讯作者信息:

  • [Bai, Yu -Lei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2024

卷: 314

5 . 5 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:550/4932265
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司