• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hu, Zhaoming (Hu, Zhaoming.) | Fang, Chao (Fang, Chao.) | Wang, Zhuwei (Wang, Zhuwei.) | Tseng, Shu-Ming (Tseng, Shu-Ming.) | Dong, Mianxiong (Dong, Mianxiong.)

收录:

EI Scopus SCIE

摘要:

With the advancement of mobile communication technology, there has been a marked increase in the demand for personalized and ubiquitous Internet of Things (IoT) services, raising the expectations for network Quality of Service (QoS) and Quality of Experience (QoE). Existing popularity-prediction-based content caching policies improve QoS and QoE by precaching contents at the network edge, but jointly optimizing multiple network metrics remains a challenge. To address this challenge, we propose a many-objective optimization-based popularity prediction for cooperative caching (MaOPPC-Caching) framework for cloud-edge-end collaborative IoT networks. This framework simultaneously optimizes prediction accuracy, delay, offloaded traffic, and load balance. We integrate three prediction algorithms to forecast content popularity and present a horizontal and vertical collaborative caching decision strategy to generate caching forms based on the predicted results. Then, the many-objective evolutionary algorithm (MaOEA) is employed to optimize the combined proportions to take full advantage of hidden preferences and popularity characteristics of both users and items. To promote the convergence of the framework, we present a knowledge mining-based MaOEA (KMaOEA) to incorporate knowledge mining into the optimization process. Simulation results show that the proposed MaOPPC-Caching framework outperforms existing prediction algorithms in terms of four evaluation indicators. Furthermore, KMaOEA shows a significant advantage over NSGA-III in load balance, as indicated by a Mann-Whitney rank sum test with a p-value of 0.040.

关键词:

Internet of Things (IoT) networks many-objective optimization popularity prediction Cloud-edge-end collaboration cooperative caching

作者机构:

  • [ 1 ] [Hu, Zhaoming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Fang, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Zhuwei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Fang, Chao]Guangxi Informat Ctr, Joint Innovat Lab Digital Guangxi Smart Infrastru, Nanning 530000, Peoples R China
  • [ 5 ] [Tseng, Shu-Ming]Natl Taipei Univ Technol, Dept Elect Engn, Taipei 106, Taiwan
  • [ 6 ] [Dong, Mianxiong]Muroran Inst Technol, Dept Sci & Informat, Muroran 0500071, Japan

通讯作者信息:

  • [Fang, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE INTERNET OF THINGS JOURNAL

ISSN: 2327-4662

年份: 2024

期: 1

卷: 11

页码: 1190-1200

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 25

ESI高被引论文在榜: 2 展开所有

  • 2024-11
  • 2024-11

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:255/5052060
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司