• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiangrong, Jiang (Qiangrong, Jiang.) | Zhikang, Xiong (Zhikang, Xiong.) | Can, Zhai (Can, Zhai.)

收录:

EI Scopus

摘要:

Protein classification is a well established research field concerned with the discovery of molecule's properties through informational techniques. Graph-based kernels provide a nice framework combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional residues in protein structures. A structure¬ is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In experiments on classification of graph models of proteins, the method based on Weisfeiler Lehman shortest path kernel with complement graphs outperformed other state-of-art methods.

关键词:

Proteins Graph theory Learning systems

作者机构:

  • [ 1 ] [Qiangrong, Jiang]Beijing University of Technology, Department of Computer Science, Beijing, China
  • [ 2 ] [Zhikang, Xiong]Beijing University of Technology, Department of Computer Science, Beijing, China
  • [ 3 ] [Can, Zhai]Beijing University of Technology, Department of Computer Science, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Chemical and Pharmaceutical Research

年份: 2014

期: 2

卷: 6

页码: 563-569

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:343/3909348
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司