收录:
摘要:
The distribution of feature attribute weights and the strategy of case retrieval have significant impacts on the classification accuracy of case-based reasoning (CBR). An improved CBR classification approach is proposed, which is combined with genetic algorithms, introspective learning, and group decision-making theory. First, multiple attribute weights are given by a genetic algorithm. Then each group of weights is iteratively adjusted in accordance with the introspective learning principle. After that the group decision-making retrieval result which satisfies the plurality rule can be obtained according to the case group-retrieval strategy. At last, the classification comparison experiments prove that the proposed method could improve the classification accuracy of CBR. The results indicate that the introspective learning could guarantee the rationality of weight allocation, and that the case group-retrieval strategy could make full use of the potential knowledge of case base, having remarkable effects on promoting the learning ability of CBR. Copyright © 2014 Acta Automatica Sinica. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址: