Indexed by:
Abstract:
Decellularized extracellular matrix (dECM) offers a three-dimensional, non-immunogenic scaffold, enriched with bioactive components, making it a suitable candidate for tissue regeneration. Although dECM-based scaffolds have been successfully implemented in preclinical and clinical settings within tissue engineering and regenerative medicine, the mechanisms of tissue remodeling and functional restoration are not fully understood. This review critically assesses the state-of-the-art in dECM scaffolds, including decellularization techniques for various tissues, quality control and cross-linking. It highlights the functional properties of dECM components and their latest applications in multiorgan tissue engineering and biomedicine. Additionally, the review addresses current challenges and limitations of decellularized scaffolds and offers perspectives on future directions in the field. © 2024 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
Exploration
ISSN: 2766-8509
Year: 2024
Cited Count:
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: