Abstract:
相比于肺癌、肝癌等常见的癌症,下咽癌是一种罕见的疾病.由于下咽癌的磁共振影像往往亮度不均、模糊、噪声重,因此如何从这些磁共振图像中获取有用信息是一个难题,如何使用深度学习通过磁共振图像来检测下咽癌的病灶是一项重大挑战.首先,综述了下咽癌的磁共振图像特点及成因,概括了 Faster-RCNN、RetinaNet、FCOS、Cascade-RCNN等常见目标检测网络的特点和应用领域,并且分析了目标检测网络应用在下咽癌病灶定位上所面临的挑战,介绍了行之有效的解决方法:可变形卷积和应用定制的锚框.然后,介绍了常见的语义分割网络,并分析了把这些语义分割网络应用在下咽癌病灶分割上所面临的挑战.最后,对上述提到的目标检测网络和语义分割网络进行了总结,并对未来下咽癌医学影像的目标检测和语义分割工作进行了展望.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2024
Issue: 7
Volume: 50
Page: 883-896
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0