• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Songmin (Jia, Songmin.) (学者:贾松敏) | Wang, Ke (Wang, Ke.) | Li, Xiuzhi (Li, Xiuzhi.) | Xu, Tao (Xu, Tao.)

收录:

EI Scopus PKU CSCD

摘要:

A monocular vision based three dimensional (3D) dense scene reconstruction technique is presented to achieve fast and accurate 3D stereoscopic modeling in the real environment. This proposed approach localizes accurately a free moving camera in the framework of parallel tracking and mapping (PTAM) algorithm. Based on this self-localization, a variational depth map estimation model is established by using a bundle of image around the keyframe. Discrete depth space sampling strategy is proposed to initialize the variational depth map model and primal dual algorithm is presented to optimize the model afterward. Subsequently, the final 3D scene model can be estimated by integrating the projective camera imaging model. Under the compute unified device architecture (CUDA), the algorithm is optimized in parallel mode by using the graphic processing unit (GPU) hardware, and its real-time performance is significantly improved. The experimental results conducted in realistic scenario demonstrats the feasibility and effectiveness of the proposed algorithm.

关键词:

3D modeling Cameras Graphics processing unit Mapping Stereo image processing Three dimensional computer graphics

作者机构:

  • [ 1 ] [Jia, Songmin]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wang, Ke]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Li, Xiuzhi]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Xu, Tao]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Optica Sinica

ISSN: 0253-2239

年份: 2014

期: 4

卷: 34

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:132/3601808
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司