• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Xi (Meng, Xi.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus PKU CSCD

摘要:

For the problem that it is difficult to determine the hidden layer structure of the radial basis function(RBF) neural network, based on the good online classified characteristic of adaptive resonance theory(ART) neural network, a self-organizing RBF neural network structure design algorithm is proposed. The algorithm uses the clustering characteristic of ART neural network to design the RBF neural network structure. Through the similarity comparison of input vector, the number of the hidden layer nodes and initial parameters are determined, so that the network has simplified structure. The experiment results show that the proposed structure has a smaller number of nodes, fast learning speed and better approximation ability.

关键词:

Arts computing Clustering algorithms Functions Multilayer neural networks Radial basis function networks

作者机构:

  • [ 1 ] [Meng, Xi]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Qiao, Jun-Fei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Han, Hong-Gui]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 乔俊飞

    [qiao, jun-fei]college of electronic information and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2014

期: 10

卷: 29

页码: 1876-1880

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:130/3601844
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司