• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jinduo (Liu, Jinduo.) | Han, Lu (Han, Lu.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

EI Scopus SCIE

摘要:

Dynamic effective connectivity (DEC) is the accumulation of effective connectivity in the time dimension, which can describe the continuous neural activities in the brain. Recently, learning DEC from functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data has attracted the attention of neuroinformatics researchers. However, the current methods fail to consider the gap between the fMRI and EEG modality, which can not precisely learn the DEC network from multimodal data. In this paper, we propose a multimodal causal adversarial network for DEC learning, named MCAN. The MCAN contains two modules: multimodal causal generator and multimodal causal discriminator. First, MCAN employs a multimodal causal generator with an attention-guided layer to produce a posterior signal and output a set of DEC networks. Then, the proposed method uses a multimodal causal discriminator to unsupervised calculate the joint gradient, which directs the update of the whole network. The experimental results on simulated data sets show that MCAN is superior to other state-of-the-art methods in learning the network structure of DEC and can effectively estimate the brain states. The experimental results on real data sets show that MCAN can better reveal abnormal patterns of brain activity and has good application potential in brain network analysis.

关键词:

adversarial training Time series analysis Electroencephalography Task analysis Functional magnetic resonance imaging multimodal causal learning Learning systems functional magnetic resonance imaging electroencephalog Feature extraction Generators Brain effective connectivity

作者机构:

  • [ 1 ] [Liu, Jinduo]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Lu]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 3 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ji, Junzhong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MEDICAL IMAGING

ISSN: 0278-0062

年份: 2024

期: 8

卷: 43

页码: 2913-2923

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:499/4878865
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司