• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Pengyu (Zhang, Pengyu.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Piao, Xinglin (Piao, Xinglin.) | Sun, Yongliang (Sun, Yongliang.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

In Graph Neural Networks (GNNs), a common feature across many datasets is the Power-law Distribution of node degrees, where most nodes exhibit few connections, contrasting with a small fraction that possesses a high number of links. This difference often introduces training instability and compromises performance on tasks like node classification, particularly for low-degree nodes. To tackle these challenges, we introduce RUNCL: : R elationship U pdating N etwork with C ontrastive L earning, a novel model designed to ensure that the model learns more accurate node features, especially the features of low-degree nodes. Specifically, RUNCL comprises a graph generation module that generates different neighborhood information graphs based on the node feature graphs. The optimal graph selection module selects the neighborhood information graph that best reflects the relationship between nodes and a contrastive learning module to learn more accurate node embeddings by contrasting positive and negative samples. We evaluate the performance of RUNCL on six datasets, and the experimental results demonstrate its effectiveness. The model exhibited an improvement of 2.5% in the testset. Moreover, the model's performance boosted to 6% when the testset only included low-degree nodes. The implementation and data are made available at https://github.com/pengyu-zhang/RUNCLRelationship-Updating-Network-with-Contrastive-Learning.

关键词:

Classification graph neural networks Semi-supervised Graph convolutional networks Graph analysis

作者机构:

  • [ 1 ] [Zhang, Pengyu]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Piao, Xinglin]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, Yongliang]China Elect Technol Grp, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS

ISSN: 0378-4371

年份: 2024

卷: 646

3 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:319/4877966
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司