• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gong, Zhi (Gong, Zhi.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Xiao, Fengjin (Xiao, Fengjin.) | Wang, Yuxi (Wang, Yuxi.)

收录:

EI Scopus SCIE

摘要:

Recently, remote sensing images have been widely used in many scenarios, gradually becoming the focus of social attention. Nevertheless, the limited annotation of scarce classes severely reduces segmentation performance. This phenomenon is more prominent in remote sensing image segmentation. Given this, we focus on image fusion and model feedback, proposing a multi-strategy method called MSAug to address the remote sensing imbalance problem. Firstly, we crop rare class images multiple times based on prior knowledge at the image patch level to provide more balanced samples. Secondly, we design an adaptive image enhancement module at the model feedback level to accurately classify rare classes at each stage and dynamically paste and mask different classes to further improve the model's recognition capabilities. The MSAug method is highly flexible and can be plug-and-play. Experimental results on remote sensing image segmentation datasets show that adding MSAug to any remote sensing image semantic segmentation network can bring varying degrees of performance improvement.

关键词:

Semantic segmentation Remote sensing images Data augmentation Rare classes

作者机构:

  • [ 1 ] [Gong, Zhi]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 3 ] [Gong, Zhi]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 4 ] [Duan, Lijuan]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 5 ] [Gong, Zhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Xiao, Fengjin]Beijing Climate Ctr, Beijing 100081, Peoples R China
  • [ 8 ] [Wang, Yuxi]Chinese Acad Sci, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong 999077, Peoples R China
  • [ 9 ] [Wang, Yuxi]Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit Automat, Beijing 100190, Peoples R China

通讯作者信息:

  • [Gong, Zhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

DISPLAYS

ISSN: 0141-9382

年份: 2024

卷: 84

4 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:473/4943608
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司