• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Wu, Tongxuan (Wu, Tongxuan.) | Yang, Cuicui (Yang, Cuicui.)

收录:

EI Scopus SCIE

摘要:

Meta-heuristic algorithms are popular for their efficiency in solving complex optimization problems. Although there are many known algorithms, identifying ways to improve their performance remains an important research area. This paper proposes a brain neuroscience-inspired meta-heuristic algorithm called the Neural Population Dynamics Optimization Algorithm (NPDOA). There are three strategies in NPDOA. (1) The attractor trending strategy drives neural populations towards optimal decisions, thereby ensuring exploitation capability. (2) The coupling disturbance strategy deviates neural populations from attractors by coupling with other neural populations, thus improving exploration ability. (3) The information projection strategy controls the communication between neural populations, enabling a transition from exploration to exploitation. The results of benchmark and practical problems verified the effectiveness of NPDOA.

关键词:

algorithm Neural population dynamics optimization Information projection Attractor trending Coupling disturbance Meta-heuristic algorithms

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing, Peoples R China
  • [ 2 ] [Wu, Tongxuan]Beijing Univ Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing, Peoples R China
  • [ 3 ] [Yang, Cuicui]Beijing Univ Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing, Peoples R China

通讯作者信息:

  • [Ji, Junzhong]Beijing Univ Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

KNOWLEDGE-BASED SYSTEMS

ISSN: 0950-7051

年份: 2024

卷: 300

8 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:425/4965353
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司