• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Shuo (Xu, Shuo.) | Ma, Xinyi (Ma, Xinyi.) | Wang, Hong (Wang, Hong.) | An, Xin (An, Xin.) | Li, Ling (Li, Ling.)

收录:

SSCI EI Scopus SCIE

摘要:

In the procedure of exploring science-technology linkages, non-patent literature (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.

关键词:

Heterogeneous information network Link prediction Scientific NPL Meta-path counting Cross-collection recommendation

作者机构:

  • [ 1 ] [Xu, Shuo]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Xinyi]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Ling]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Hong]Elect Power Res Inst, China Southern Grid, Guangzhou 510663, Peoples R China
  • [ 5 ] [An, Xin]Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China

通讯作者信息:

  • [An, Xin]Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF INFORMETRICS

ISSN: 1751-1577

年份: 2024

期: 4

卷: 18

3 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:588/4963623
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司