• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Wei (Qi, Wei.) | Hou, Yaxi (Hou, Yaxi.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Xu, Xiao (Xu, Xiao.)

收录:

EI Scopus

摘要:

Affine Scale Invariant Feature Transform (ASIFT) is robust to scales, rotation, scaling and affine transformation. It could be used for face recognition with pose variation. However, ASIFT requires large data. Could we reduce the data of ASIFT and preserve the face recognition performance? In this paper, we propose an effective face recognition algorithm to combining the structural similarity (SSIM) and PCA-ASIFT (PCA-ASIFT&SSIM).First, we reduce ASIFT dimension using principal component analysis and get PCA-ASIFT. The PCA-ASIFT’s discriminative capability drops because of the dimension reduction. It brings about more false SIFT matching. We further introduce the SSIM to reduce the false matching. The experimental results show the efficiency of the proposed approach. © Springer International Publishing Switzerland 2014.

关键词:

Affine transforms Dimensionality reduction Face recognition Gesture recognition

作者机构:

  • [ 1 ] [Qi, Wei]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Hou, Yaxi]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wu, Lifang]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Xu, Xiao]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 毋立芳

    [wu, lifang]school of electronic information and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

ISSN: 0302-9743

年份: 2014

卷: 8833

页码: 163-172

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1117/3642727
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司