• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Guohan (Tang, Guohan.) | Wang, Ding (Wang, Ding.) | Li, Xin (Li, Xin.) | Ren, Jin (Ren, Jin.) | Liu, Nan (Liu, Nan.)

收录:

EI Scopus

摘要:

In this paper, a value-iteration-based off-policy Q-learning algorithm is developed. The proposed algorithm solves the optimal regulation problem of nonlinear systems with unknown dynamics. Under the off-policy mechanism, the algorithm utilizes the behavioral policy for full exploration, which is beneficial to avoid the target policy from falling into the local optimal solution. In addition, a relaxation factor is introduced to adjust the convergence rate of the cost function sequence. To implement the algorithm, the critic network and the action network are used to approximate the optimal Q-function and the optimal control policy, respectively. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed algorithm. © 2024 IEEE.

关键词:

Dynamic programming Learning systems Reinforcement learning Learning algorithms Nonlinear systems Cost functions Adaptive control systems Iterative methods Discrete time control systems

作者机构:

  • [ 1 ] [Tang, Guohan]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 2 ] [Wang, Ding]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 3 ] [Li, Xin]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 4 ] [Ren, Jin]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 5 ] [Liu, Nan]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 2717-2722

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:422/4952812
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司