• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Liuyuan (He, Liuyuan.) | Zuo, Guoyu (Zuo, Guoyu.) | Li, Jiangeng (Li, Jiangeng.) | Yu, Shuangyue (Yu, Shuangyue.)

收录:

EI Scopus

摘要:

Imitation learning algorithms for robotics applications require sufficient optimal data to learn well-performing strategies. State-of-the-art approaches utilize pre-labeled data or interaction with the environment to filter suboptimal data, which is time-consuming and laborious in reality. In this paper, we propose a new approach that avoids manual labeling or environment interaction. We design an additional discriminator for the behavioral cloning approach to distinguish the optimal and suboptimal data in order to influence policy learning and avoid suboptimal behaviors. Within this framework, we design a new imitation learning algorithm that utilizes the output of the discriminator as weights to learn efficiently on datasets containing suboptimal data. We evaluate the performance of the proposed method in four environments and compare it with three benchmark methods. The results illustrate that our method has better performance when dealing with datasets containing suboptimal data. The method we proposed can distinguish data with higher values in the dataset and enable the agent to learn high-performance policy from imperfect demonstrations or a small amount of data. © 2024 IEEE.

关键词:

Benchmarking Discriminators Learning algorithms Clone cells Cloning

作者机构:

  • [ 1 ] [He, Liuyuan]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China
  • [ 2 ] [Zuo, Guoyu]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China
  • [ 3 ] [Li, Jiangeng]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China
  • [ 4 ] [Yu, Shuangyue]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 5566-5571

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:338/4977205
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司