• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cheng, Zijun (Cheng, Zijun.) | Yan, Aijun (Yan, Aijun.) | Tang, Jian (Tang, Jian.)

收录:

EI Scopus

摘要:

To accurately predict the key parameters of the municipal solid waste incineration (MSWI) process, this paper proposes an improved case-based reasoning (CBR) predictive modeling method based on a deep Q network to realize the case adaptation process. First, the MSWI operation process is analyzed to screen out the relevant feature variables and build the corresponding case base. Second, the K-nearest neighbor (KNN) algorithm is used to realize the case retrieval process of the parameter prediction, and cases similar to the current incineration state are obtained. Then, based on the 'Learning-Evaluation-Revision'idea, the case difference adaptation knowledge between similar cases and the feature variables of the current state is learned through the deep Q network to realize key parameter prediction. Finally, the actual data of a solid waste incineration plant are used to predict the key parameters of the furnace temperature and flue gas oxygen content. The results show that the proposed method can accurately predict the MSWI process parameters. © 2024 IEEE.

关键词:

Waste incineration Municipal solid waste Parameter estimation Nearest neighbor search Case based reasoning Forecasting

作者机构:

  • [ 1 ] [Cheng, Zijun]Faculty Of Information Technology, Beijing University Of Technology, Beijing; 100124, China
  • [ 2 ] [Cheng, Zijun]Engineering Research Center Of Digital Community, Ministry Of Education, Beijing; 100124, China
  • [ 3 ] [Cheng, Zijun]Beijing University Of Technology, Beijing, China
  • [ 4 ] [Yan, Aijun]Faculty Of Information Technology, Beijing University Of Technology, Beijing; 100124, China
  • [ 5 ] [Yan, Aijun]Engineering Research Center Of Digital Community, Ministry Of Education, Beijing; 100124, China
  • [ 6 ] [Yan, Aijun]Beijing University Of Technology, Beijing, China
  • [ 7 ] [Yan, Aijun]Beijing Laboratory For Urban Mass Transit, Beijing; 100124, China
  • [ 8 ] [Tang, Jian]Faculty Of Information Technology, Beijing University Of Technology, Beijing; 100124, China
  • [ 9 ] [Tang, Jian]Beijing University Of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2024

页码: 1710-1714

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:550/4950910
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司