• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dou, Huijing (Dou, Huijing.) | Zhang, Yuxin (Zhang, Yuxin.) | Lu, Yao (Lu, Yao.) | Liu, Shenghao (Liu, Shenghao.)

收录:

EI Scopus

摘要:

In direction-of-arrival (DOA), most of the existing popular deep learning-based methods consider uniform linear array (ULA) systems. Although they show higher performance than parametric methods, the high accuracy of the estimation still needs to be improved. In recent years, coprime arrays have been widely studied due to their advantages over ULAs. In this paper, we propose a deep framework for dual-signal DOA with coprime array, considering it as a multi-classification problem. The entire framework consists of the feature network and the classifier network. First, we propose a preprocessing method suitable for coprime arrays, where the extended covariance matrix is used as the input processing object. Next, the feature network extracts feature from the data. We introduce a lightweight channel attention mechanism to help improve the performance of the deep model. Finally, the classifier network performs DOA estimation. © 2024 SPIE.

关键词:

Deep learning Covariance matrix Classification (of information) Learning systems Direction of arrival

作者机构:

  • [ 1 ] [Dou, Huijing]College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Yuxin]College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Lu, Yao]College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Liu, Shenghao]College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2024

卷: 13214

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:624/4949334
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司