• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Geng, Tenghui (Geng, Tenghui.) | Chai, Wei (Chai, Wei.)

收录:

EI Scopus

摘要:

Stochastic configuration networks (SCNs) have been extensively employed in the modeling of nonlinear system regression tasks. The SCN model stops training by setting the maximum number of nodes in the hidden layer or the expected error tolerance. If the parameters are not set properly, it is easy to cause the model to overfit. To address this problem, a pruning SCN algorithm based on node similarity and contribution (SCPSCN) is proposed. First of all, we introduce the definitions of node similarity. Then, basing on Garson algorithm, a method that can effectively judge the contribution of hidden layer nodes is introduced. Finally, the redundant and low-quality nodes are deleted based on the similarity and contribution so that the optimal network structure of SCN is obtained. The proposed method has been successfully applied to prediction of BOD in a wastewater treatment plant. The experimental results show that SCPSCN has better prediction performance than the original SCN method. © 2024 IEEE.

关键词:

Stochastic systems Structural optimization Wastewater treatment

作者机构:

  • [ 1 ] [Geng, Tenghui]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China
  • [ 2 ] [Geng, Tenghui]Beijing Key Laboratory Of Computational Intelligence And Intelligent System, Beijing; 100124, China
  • [ 3 ] [Chai, Wei]Beijing University Of Technology, Faculty Of Information Technology, Beijing; 100124, China
  • [ 4 ] [Chai, Wei]Beijing Key Laboratory Of Computational Intelligence And Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 1889-1894

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:271/4974744
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司