• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Bokang (Wang, Bokang.) | Tang, Jian (Tang, Jian.) | Xia, Heng (Xia, Heng.) | Tian, Hao (Tian, Hao.) | Wang, Tianzheng (Wang, Tianzheng.) | Wu, Zhiwei (Wu, Zhiwei.)

收录:

EI Scopus

摘要:

To tackle the challenge of controlling furnace temperature in municipal solid waste incineration (MSWI), which is critical for incineration efficiency and pollutant reduction, this paper introduces a model predictive control (MPC) strategy utilizing a back propagation neural network (BPNN). Traditional PID struggles with the nonlinearity and disturbances of process. Our approach involves constructing a BPNN-based prediction model to forecast future furnace temperatures. Using gradient descent, we optimize the objective function within a predetermined period, allowing for real-time adjustment of control variables. This effectiveness of method is validated through experiments with data from a Beijing MSWI plant, demonstrating enhanced tracking and disturbance management capabilities. © 2024 IEEE.

关键词:

Municipal solid waste Predictive control systems Gradient methods Backpropagation Neural networks Model predictive control Torsional stress Waste incineration Temperature

作者机构:

  • [ 1 ] [Wang, Bokang]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 2 ] [Tang, Jian]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 3 ] [Xia, Heng]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 4 ] [Tian, Hao]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 5 ] [Wang, Tianzheng]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 6 ] [Wu, Zhiwei]Northeastern University, State Key Laboratory Of Synthetical Automation For Process Industries, Shenyang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2024

页码: 1731-1736

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:545/4962830
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司