• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zi (Wang, Zi.) | Tang, Jian (Tang, Jian.) | Xia, Heng (Xia, Heng.) | Zhang, Runyu (Zhang, Runyu.) | Wang, Tianzheng (Wang, Tianzheng.) | Wu, Zhiwei (Wu, Zhiwei.)

收录:

EI Scopus

摘要:

Municipal solid waste incineration (MSWI) processes emit the greenhouse gas carbon dioxide (CO2), contributing to global atmospheric warming. In order to achieve the dual carbon goal and protect the ecological environment, it is imperative to predict CO2 emission concentrations and implement proactive control measures. Addressing these concerns, this study introduces a CO2 emission prediction model for the MSWI process based on the LSTM-compensated ARIMA model. Initially, the ARIMA model serves as the primary predictor for CO2 emissions and calculates its prediction residuals. Subsequently, the LSTM model functions as a compensatory model, utilizing the predicted residuals as input truth values for constructing predictions. Finally, the predicted values from the primary and compensatory models are weighted and combined to yield the ultimate result. Experimental results, conducted using data from an MSWI plant in Beijing, demonstrate the efficacy of this approach. © 2024 IEEE.

关键词:

Waste incineration Carbon dioxide Long short-term memory Municipal solid waste Forecasting Greenhouse gases

作者机构:

  • [ 1 ] [Wang, Zi]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 2 ] [Tang, Jian]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 3 ] [Xia, Heng]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 4 ] [Zhang, Runyu]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 5 ] [Wang, Tianzheng]Beijing University Of Technology, Faculty Of Information Technology, Beijing, China
  • [ 6 ] [Wu, Zhiwei]Northeastern University, State Key Laboratory Of Synthetical Automation For Process Industries, Shenyang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 2357-2362

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:361/4952073
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司