• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yingying (Wang, Yingying.) | Wang, Kun (Wang, Kun.) | Ding, Zhiming (Ding, Zhiming.)

收录:

CPCI-S EI Scopus

摘要:

With the emergence of a large number of remote sensing data sources, how to effectively use the useful information in multi-source data for better earth observation has become an interesting but challenging problem. In this paper, the deep learning method is used to study the joint classification of hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data. The network proposed in this paper is named convolutional neural network based on multiple attention mechanisms (MatNet). Specifically, a convolutional neural network (CNN) with an attention mechanism is used to extract the deep features of HSI and LiDAR respectively. Then the obtained features are introduced into the dual-branch cross-attention fusion module (DCFM) to fuse the information in HSI and LiDAR data effectively. Finally, the obtained features are introduced into the classification module to obtain the final classification results. Experimental results show that our proposed network can achieve better classification performance than existing methods.

关键词:

deep learning Convolutional neural network (CNN) hyperspectral imagery (HSI) feature extraction data fusion

作者机构:

  • [ 1 ] [Wang, Yingying]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Kun]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China

通讯作者信息:

  • [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024

ISSN: 0302-9743

年份: 2024

卷: 14619

页码: 274-287

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:489/4931550
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司