• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Fangyu (Li, Fangyu.) | Lin, Junnuo (Lin, Junnuo.) | Wang, Yu (Wang, Yu.) | Du, Yongping (Du, Yongping.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

Distributed learning-based high-dimensional temporal modeling for the industrial Internet of Things (IIoT) has become a prevailing trend. However, traditional distributed learning inefficiently extracts information by straightforward architects, resulting in low modeling accuracy and high communication costs. We propose a distributed hierarchical temporal graph learning (DHTGL) approach. In terminal equipment, we construct an adaptive hierarchical dilation convolutional network to dynamically capture spatiotemporal features by adjusting the dilation factor at each layer. Next, we construct the adaptive graphs according to the connection similarity between dimensions to capture implicit connections. In the edge device, we design a node-edge graph distance calculation based on the Gromov-Wasserstein distance to group feature graphs and construct representative cluster feature graphs. Edge devices upload cluster feature graphs to reduce communication costs while minimizing information loss. In the central server, we incorporate graph attention networks into the graph neural networks for edge updating in training models on clustered feature graphs. Experiments using the public IIoT data sets and the self-built IIoT platform demonstrate the effectiveness of DHTGL in comparison with common distributed learning approaches. The results confirm that DHTGL consumes fewer communications while achieving higher accuracies.

关键词:

graph convolutional network (GCN) Feature extraction Industrial Internet of Things Computational modeling Data models Distance learning Costs industrial Internet of Things (IIoT) Distributed learning Computer aided instruction

作者机构:

  • [ 1 ] [Li, Fangyu]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Lin, Junnuo]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Fangyu]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Lin, Junnuo]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 7 ] [Du, Yongping]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 8 ] [Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Yu]Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA

通讯作者信息:

  • [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China;;[Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE INTERNET OF THINGS JOURNAL

ISSN: 2327-4662

年份: 2024

期: 17

卷: 11

页码: 28578-28590

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:477/4967752
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司