• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hasan, Mohammad Mehedi (Hasan, Mohammad Mehedi.) | Yu, Naigong (Yu, Naigong.) (学者:于乃功) | Mirani, Imran Khan (Mirani, Imran Khan.)

收录:

EI Scopus SCIE

摘要:

Detecting wafer map anomalies is crucial for preventing yield loss in semiconductor fabrication, although intricate patterns and resource-intensive labeled data prerequisites hinder precise deep-learning segmentation. This paper presents an innovative, unsupervised method for detecting pixel-level anomalies in wafer maps. It utilizes an efficient dual attention module with a knowledge distillation network to learn defect distributions without anomalies. Knowledge transfer is achieved by distilling information from a pre-trained teacher into a student network with similar architecture, except an efficient dual attention module is incorporated atop the teacher network's feature pyramid hierarchies, which enhances feature representation and segmentation across pyramid hierarchies that selectively emphasize relevant and discard irrelevant features by capturing contextual associations in positional and channel dimensions. Furthermore, it enables student networks to acquire an improved knowledge of hierarchical features to identify anomalies across different scales accurately. The dissimilarity in feature pyramids acts as a discriminatory function, predicting the likelihood of an abnormality, resulting in highly accurate pixel-level anomaly detection. Consequently, our proposed method excelled on the WM-811K and MixedWM38 datasets, achieving AUROC, AUPR, AUPRO, and F1-Scores of (99.65%, 99.35%), (97.31%, 92.13%), (90.76%, 84.66%) respectively, alongside an inference speed of 3.204 FPS, showcasing its high precision and efficiency.

关键词:

Image segmentation Feature extraction Semiconductor device modeling Knowledge engineering Training attention network Fabrication knowledge distillation Wafer map anomaly detection Anomaly detection

作者机构:

  • [ 1 ] [Hasan, Mohammad Mehedi]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100022, Peoples R China
  • [ 2 ] [Yu, Naigong]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100022, Peoples R China
  • [ 3 ] [Mirani, Imran Khan]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100022, Peoples R China
  • [ 4 ] [Hasan, Mohammad Mehedi]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100022, Peoples R China
  • [ 5 ] [Yu, Naigong]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100022, Peoples R China
  • [ 6 ] [Mirani, Imran Khan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100022, Peoples R China

通讯作者信息:

  • [Hasan, Mohammad Mehedi]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100022, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING

ISSN: 0894-6507

年份: 2024

期: 3

卷: 37

页码: 293-303

2 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:581/4963849
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司