• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Liu, Guangyuan (Liu, Guangyuan.) | En, Qing (En, Qing.) | Liu, Zhaoying (Liu, Zhaoying.) | Gong, Zhi (Gong, Zhi.) | Ma, Bian (Ma, Bian.)

收录:

EI Scopus SCIE

摘要:

Zero-shot object detection aims to identify objects from unseen categories not present during training. Existing methods rely on category labels to create pseudo-features for unseen categories, but they face limitations in exploring semantic information and lack robustness. To address these issues, we introduce a novel framework, EKZSD, enhancing zero-shot object detection by incorporating external knowledge and contrastive paradigms. This framework enriches semantic diversity, enhancing discriminative ability and robustness. Specifically, we introduce a novel external knowledge extraction module that leverages attribute and relationship prompts to enrich semantic information. Moreover, a novel external knowledge contrastive learning module is proposed to enhance the model's discriminative and robust capabilities by exploring pseudo- visual features. Additionally, we use cycle consistency learning to align generated visual features with original semantic features and adversarial learning to align visual features with semantic features. Collaboratively trained with contrast learning loss, cycle consistency loss, adversarial learning loss, and classification loss, our framework outperforms superior performance on the MSCOCO and Ship-43 datasets, as demonstrated in experimental results.

关键词:

External knowledge Zero-shot object detection Supervised contrastive learning

作者机构:

  • [ 1 ] [Duan, Lijuan]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Guangyuan]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 3 ] [Gong, Zhi]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Bian]Beijing Univ Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 5 ] [Duan, Lijuan]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Guangyuan]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 7 ] [Gong, Zhi]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Bian]Beijing Univ Technol, Natl Engn Lab Crit Technol Informat Secur Classifi, Beijing 100124, Peoples R China
  • [ 9 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 10 ] [Liu, Guangyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 12 ] [Gong, Zhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 13 ] [Ma, Bian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 14 ] [En, Qing]Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada

通讯作者信息:

  • [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2024

卷: 185

页码: 152-159

5 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:578/4955286
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司