• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lang, Shinan (Lang, Shinan.) | Huang, Wenbin (Huang, Wenbin.) | Huang, Ling (Huang, Ling.) | Liu, Xiaojun (Liu, Xiaojun.)

收录:

EI Scopus SCIE

摘要:

Among the inversion methods for airborne transient electromagnetic (ATEM) data, the hybrid inversion method integrates the iterative optimization framework with artificial neural networks (ANNs), ensuring inversion accuracy while enhancing the generalization capability of neural networks. However, this method faces challenges in terms of slow computation speeds due to its lower updated step length and the lack of consideration for electromagnetic response laws. Our method adopts a supervised descent method (SDM) framework to supervise the ANNs, obtaining a longer updated step length. On the basis of the SDM framework, we have considered the electromagnetic response laws and designed RNN-ResNet and 1-D-UNet networks to update the conductivity model, improving the computing speed. Through numerical ablation experiments, we validated the effectiveness of our proposed method and compared the inversion results with those obtained using the traditional hybrid method. Additionally, we conducted tests on bundle fringe distribution, inversion fitting loss, noise sensitivity, and inversion speed for both methods using measured data to evaluate their performance in practical applications. The experimental findings demonstrate that our method achieves the same level of inversion accuracy and generalization ability as the traditional hybrid method while enhancing inversion speed by up to 68.5%.

关键词:

Airborne transient electromagnetic (ATEM) data inversion Iterative methods rapid inversion method controlled-source electromagnetics (CSEM) Conductivity Accuracy encoder-decoder structure supervised descent method (SDM) Data models Optimization Atmospheric modeling Electromagnetics

作者机构:

  • [ 1 ] [Lang, Shinan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Wenbin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Ling]Chinese Acad Sci, Inst Elect, Key Lab Electromagnet Radiat & Sensing Technol, Beijing 100094, Peoples R China
  • [ 4 ] [Liu, Xiaojun]Chinese Acad Sci, Inst Elect, Key Lab Electromagnet Radiat & Sensing Technol, Beijing 100094, Peoples R China
  • [ 5 ] [Huang, Ling]Chinese Acad Sci, Aerosp Informat Res Inst AIRCAS, Beijing 100094, Peoples R China
  • [ 6 ] [Liu, Xiaojun]Chinese Acad Sci, Aerosp Informat Res Inst AIRCAS, Beijing 100094, Peoples R China

通讯作者信息:

  • [Huang, Ling]Chinese Acad Sci, Inst Elect, Key Lab Electromagnet Radiat & Sensing Technol, Beijing 100094, Peoples R China;;[Huang, Ling]Chinese Acad Sci, Aerosp Informat Res Inst AIRCAS, Beijing 100094, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

ISSN: 0196-2892

年份: 2024

卷: 62

8 . 2 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:513/4941055
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司