• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liao, Y. (Liao, Y..) | Yu, N. (Yu, N..)

收录:

Scopus

摘要:

The firing of spatial cells in the entorhinal-hippocampal structure is believed to enable the formation of a cognitive map for the environment. Inspired by the spatial cognitive mechanism of the rat's brain, the authors proposed a real-time cognitive map construction method based on the entorhinal-hippocampal working mechanism. Firstly, based on the physiological properties of the rat's brain, the authors constructed an entorhinal-hippocampal CA3 neurocomputational model for path integration. Then, the transformation relationship between the cell plate and the real environment is used to solve the robot's position. Path integration inevitably generates cumulative errors, which require loop-closure detection and pose optimisation to eliminate errors. To solve the problem that the RatSLAM algorithm is slow in pose optimisation, the authors proposed a pose optimisation method based on a multi-layer CA1 place cell to improve the speed of pose optimisation. To validate the method, the authors designed simulation experiments, dataset experiments, and physical experiments. The experimental results showed that compared to other brain-like SLAM algorithms, the authors’ method possesses outstanding performance in path integration accuracy and map construction speed. As a result, the authors’ method can endow mobile robots with the ability to quickly and accurately construct cognitive maps in complex and unknown environments. © 2024 The Authors. Cognitive Computation and Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Shenzhen University.

关键词:

cognitive systems artificial intelligence intelligent robots

作者机构:

  • [ 1 ] [Liao Y.]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yu N.]Beijing Key Laboratory of Computing Intelligence and Intelligent System, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Cognitive Computation and Systems

ISSN: 2517-7567

年份: 2024

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:340/4971560
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司