• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chu, Ankang (Chu, Ankang.) | Lai, Yingxu (Lai, Yingxu.) (学者:赖英旭) | Liu, Jing (Liu, Jing.)

收录:

EI SCIE

摘要:

Intrusion detection is essential for ensuring the security of industrial control systems. However, conventional intrusion detection approaches are unable to cope with the complexity and ever-changing nature of industrial intrusion attacks. In this study, we propose an industrial control intrusion detection approach based on a combined deep learning model for communication processes that use the Modbus protocol. Initially, the network packets are classified as carrying information and noncarrying information based on key fields according to the communication protocol used. Next, a template comparison approach is employed to detect the network packets that do not carry any information. Furthermore, an approach based on a GoogLeNet-long short-term memory model is used to detect the network packets that do carry information. This approach involves network packet sequence construction, feature extraction, and time-series level detection. Subsequently, the detected intrusions are classified into multiple categories through a Softmax classifier. A gas pipeline dataset of the Modbus protocol is used to evaluate the proposed approach and compare it with existing strategies. The accuracy, false-positive rate, and miss rate are 97.56%, 2.42%, and 2.51%, respectively, thus confirming that the proposed approach is suitable for intrusion detection in industrial control systems.

关键词:

作者机构:

  • [ 1 ] [Chu, Ankang]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jing]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Lai, Yingxu]Sci & Technol Informat Assurance Lab, Beijing 100072, Peoples R China
  • [ 5 ] [Liu, Jing]Xidian Univ, Shaanxi Key Lab Network & Syst Secur, Xian 710071, Shaanxi, Peoples R China

通讯作者信息:

  • 赖英旭

    [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China;;[Lai, Yingxu]Sci & Technol Informat Assurance Lab, Beijing 100072, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SECURITY AND COMMUNICATION NETWORKS

ISSN: 1939-0114

年份: 2019

卷: 2019

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:4

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:767/3894773
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司