• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Duan, Junyi (Duan, Junyi.)

收录:

EI Scopus

摘要:

Modern blast furnace ironmaking technology primarily utilizes the thermal condition of the furnace belly to reflect the furnace temperature status. However, the complexity of the smelting process makes effective modeling and control extremely challenging. During the ironmaking process, the control of furnace temperature directly affects production efficiency and product quality. Since the furnace temperature is difficult to measure directly, the silicon content in molten iron is commonly used to reflect the thermal state of the blast furnace. Traditional methods for predicting the silicon content in molten iron have limitations and struggle to adapt to complex and variable production conditions. With the advancement of neural network technology, this paper constructs a prediction model for the silicon content in blast furnace molten iron by creating a hybrid of Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), and a MultiHead Attention Mechanism (MA). Through deploying and analyzing the CNN-LSTM-MA model in a real production environment, the superiority of the CNN-LSTM-MA model in silicon content prediction has been verified. © 2024 SPIE.

关键词:

Smelting Long short-term memory Knowledge acquisition Prediction models Deep neural networks Quality control Blast furnaces

作者机构:

  • [ 1 ] [Duan, Junyi]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2024

卷: 13259

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:487/4932498
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司