• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Song, Chengxi (Song, Chengxi.) | Niu, Lingfeng (Niu, Lingfeng.) | Lei, Minglong (Lei, Minglong.)

收录:

EI Scopus

摘要:

Graph anomaly detection (GAD) has been extensively studied in recent years. GAD aims to detect nodes, edges, and subgraphs that exhibit characteristics and distributions different from those of the majority of graph data. With the advancement of deep learning, many researchers have applied machine learning to address anomaly detection at various scales. In this paper, we classify GAD methods into detector-based and classifier-based approaches and provide a brief introduction and summary of relevant articles from the past three years. Finally, we analyze the challenges and future development directions in the field of GAD. © 2024 The Authors.

关键词:

Graph neural networks Adversarial machine learning Contrastive Learning

作者机构:

  • [ 1 ] [Song, Chengxi]School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing; 100049, China
  • [ 2 ] [Song, Chengxi]CAS Research Center on Fictitious Economy & Data Science, University of Chinese Academy of Sciences, Beijing; 100190, China
  • [ 3 ] [Niu, Lingfeng]School of Economic and Management, University of Chinese Academy of Sciences, Beijing; 100190, China
  • [ 4 ] [Niu, Lingfeng]CAS Research Center on Fictitious Economy & Data Science, University of Chinese Academy of Sciences, Beijing; 100190, China
  • [ 5 ] [Lei, Minglong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

卷: 242

页码: 1263-1270

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:405/4859294
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司