• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Liu, Jinduo (Liu, Jinduo.) | Zou, Aixiao (Zou, Aixiao.) | Zhang, Aidong (Zhang, Aidong.)

收录:

Scopus SCIE PubMed

摘要:

Identifying brain effective connectivity (EC) networks from neuroimaging data has become an effective tool that can evaluate normal brain functions and the injuries associated with neurodegenerative diseases. So far, there are many methods used to identify EC networks. However, most of the research currently focus on learning EC networks from single modal imaging data such as functional magnetic resonance imaging (fMRI) data. This paper proposes a new method, called ACOEC-FD, to learn EC networks from fMRI and diffusion tensor imaging (DTI) using ant colony optimization (ACO). First, ACOEC-FD uses DTI data to acquire some positively correlated relations among regions of interest (ROI), and takes them as anatomical constraint information to effectively restrict the search space of candidate arcs in an EC network. ACOEC-FD then achieves multi-modal imaging data integration by incorporating anatomical constraint information into the heuristic function of probabilistic transition rules to effectively encourage ants more likely to search for connections between structurally connected regions. Through simulation studies on generated datasets and real fMRI-DTI datasets, we demonstrate that the proposed approach results in improved inference results on EC compared to some methods that only used fMRI data.

关键词:

anatomical constraint information ant colony optimization brain effective connectivity networks diffusion tensor imaging functional magnetic resonance imaging

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 2 ] [Liu, Jinduo]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 3 ] [Zou, Aixiao]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 4 ] [Zhang, Aidong]Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FRONTIERS IN NEUROSCIENCE

年份: 2019

卷: 13

4 . 3 0 0

JCR@2022

ESI学科: NEUROSCIENCE & BEHAVIOR;

ESI高被引阀值:53

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:154/3603527
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司