• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xin (Li, Xin.) | Chen, Zetao (Chen, Zetao.) | Liang, Qiongyu (Liang, Qiongyu.) | Yang, Yadan (Yang, Yadan.)

收录:

EI Scopus

摘要:

A mental stress recognition model that adapts to human recognition process is designed after analyzing the generation of mental stress in this paper. Features extraction and stress quantification are achieved by the model with a stress evaluation, which considers affective computing theory, based on the Hidden Markov Model. The fusion parameter dataset of stress is built with features acquired by physiological parameters of stressed individuals. The model parameters are acquired after training the model by the Baum-Welch algorithm. In applying the model, we collected 17 training samples and 22 test samples from the volunteers' physiological parameters when motivated by stress sources. The stress levels of all samples were determined by the questionnaire. After training the model, the accuracy rate of the model for the test sample reached 96.4%.

关键词:

Physiological models Physiology Computation theory Hidden Markov models

作者机构:

  • [ 1 ] [Li, Xin]Institute of Biomedical Engineering, Yanshan University, Qinhuangdao , China
  • [ 2 ] [Li, Xin]College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing , China
  • [ 3 ] [Chen, Zetao]Institute of Biomedical Engineering, Yanshan University, Qinhuangdao , China
  • [ 4 ] [Liang, Qiongyu]Institute of Biomedical Engineering, Yanshan University, Qinhuangdao , China
  • [ 5 ] [Yang, Yadan]College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing , China

通讯作者信息:

  • [li, xin]college of life science and bio-engineering, beijing university of technology, beijing , china;;[li, xin]institute of biomedical engineering, yanshan university, qinhuangdao , china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Computational Information Systems

ISSN: 1553-9105

年份: 2014

期: 18

卷: 10

页码: 7911-7919

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:320/3911699
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司