• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Xiaomin (Liu, Xiaomin.) | Xu, Jingyao (Xu, Jingyao.) | Chi, Xuchong (Chi, Xuchong.) | Zhang, Xinfeng (Zhang, Xinfeng.) | Guo, Wei (Guo, Wei.) | Wang, Fei (Wang, Fei.) | Li, Xiangsheng (Li, Xiangsheng.)

收录:

CPCI-S EI

摘要:

Segmentation of breast tumors from dynamic contrast-enhanced magnetic resonance (DCE-MR) images is a critical step in the diagnosis of breast cancer and subsequent efficacy assessment. However, the irregular shape and size of breast tumors, as well as the inhomogeneity of the background, pose challenges to accurately segmenting tumors in DCE-MR images. To address this, our study proposes a breast tumor segmentation model based on U-net++ and a breast region localization (BRL) module for more precise segmentation in DCE-MRI. This model helps doctors accurately locate the tumor position and perform lesion region segmentation. The BRL module effectively localizes the breast region, inhibits confusion of tissues in the chest cavity, and accelerates the convergence of the subsequent segmentation network. U-Net++ applies a residual network structure to segment the lesion region. Experimental results show that our proposed segmentation model achieves accurate segmentation of breast tumors, with a Dice coefficient of 0.78 and a sensitivity of 0.89.

关键词:

magnetic resonance imaging deep learning Breast cancer image segmentation

作者机构:

  • [ 1 ] [Liu, Xiaomin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Xu, Jingyao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Chi, Xuchong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Xinfeng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Guo, Wei]Air Force Med Univ, PLA, Dept Tradit Chinese Med Manipulat Orthoped, Air Force Med Ctr, Xian, Peoples R China
  • [ 6 ] [Wang, Fei]Air Force Med Univ, PLA, Dept Tradit Chinese Med Manipulat Orthoped, Air Force Med Ctr, Xian, Peoples R China
  • [ 7 ] [Li, Xiangsheng]Air Force Med Univ, PLA, Air Force Med Ctr, Dept Med Imaging, Xian, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023

年份: 2023

页码: 63-68

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:597/4949765
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司