Indexed by:
Abstract:
The burgeoning development of next-generation technologies, especially the Industrial Internet of Things (IIoT), has heightened interest in predictive maintenance (PdM). Accurate failure forecasting and prompt responses to downtime are essential for improving the industrial efficiency. Traditional PdM methods often suffer from high false alarm rates and inefficiencies in complex environments. This paper introduces a predictive maintenance framework using identity resolution and a transformer model. Devices receive unique IDs via distributed identifiers (DIDs), followed by a state awareness model to assess device health from sensor signals. A sequence prediction model forecasts future signal sequences, which are then used with the state awareness model to determine future health statuses. Combining these predictions with unique IDs allows for the rapid identification of facilities needing maintenance. Experimental results show superior performance, with 99% accuracy for the state awareness model and a mean absolute error (MAE) of 0.062 for the sequence prediction model, underscoring the effectiveness of the framework. © 2024 by the authors.
Keyword:
Reprint Author's Address:
Email:
Source :
Future Internet
Year: 2024
Issue: 9
Volume: 16
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: