• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Zhibo (Qi, Zhibo.) | Du, Lei (Du, Lei.) | Huo, Ru (Huo, Ru.) | Huang, Tao (Huang, Tao.)

收录:

EI Scopus

摘要:

The burgeoning development of next-generation technologies, especially the Industrial Internet of Things (IIoT), has heightened interest in predictive maintenance (PdM). Accurate failure forecasting and prompt responses to downtime are essential for improving the industrial efficiency. Traditional PdM methods often suffer from high false alarm rates and inefficiencies in complex environments. This paper introduces a predictive maintenance framework using identity resolution and a transformer model. Devices receive unique IDs via distributed identifiers (DIDs), followed by a state awareness model to assess device health from sensor signals. A sequence prediction model forecasts future signal sequences, which are then used with the state awareness model to determine future health statuses. Combining these predictions with unique IDs allows for the rapid identification of facilities needing maintenance. Experimental results show superior performance, with 99% accuracy for the state awareness model and a mean absolute error (MAE) of 0.062 for the sequence prediction model, underscoring the effectiveness of the framework. © 2024 by the authors.

关键词:

Prediction models Predictive maintenance Condition based maintenance Scheduled maintenance Distribution transformers Electronic health record

作者机构:

  • [ 1 ] [Qi, Zhibo]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China
  • [ 2 ] [Qi, Zhibo]Department of Industrial Internet Institute, China Academy of Information and Communication, Beijing; 100083, China
  • [ 3 ] [Du, Lei]School of Information Science and Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Huo, Ru]School of Information Science and Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Huo, Ru]Future Network Research Center, Purple Mountain Laboratories, Nanjing; 211111, China
  • [ 6 ] [Huang, Tao]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China
  • [ 7 ] [Huang, Tao]Future Network Research Center, Purple Mountain Laboratories, Nanjing; 211111, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Future Internet

年份: 2024

期: 9

卷: 16

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:295/4897615
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司