• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Fan-Jun (Li, Fan-Jun.) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

In order to design the structure of extreme learning machine(ELM), a pruning algorithm is proposed by using the sensitivity analysis method. The residual error's sensitivities to the hidden nodes are defined by their outputs and weight vectors connecting to the output layer. The model scale adaptability is calculated and the hidden nodes are sorted by using the defined sensitivities. Then, the number of requisite hidden nodes is estimated by the model scale adaptability. The redundant nodes with smaller sensitivities are removed from the existent network. The simulation results show that the proposed approach can construct the compact structure for ELM effectively.

关键词:

Learning algorithms Feedforward neural networks Knowledge acquisition Machine learning Sensitivity analysis

作者机构:

  • [ 1 ] [Li, Fan-Jun]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Li, Fan-Jun]School of Mathematical Science, Ji'nan University, Ji'nan 250022, China
  • [ 3 ] [Han, Hong-Gui]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Qiao, Jun-Fei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2014

期: 6

卷: 29

页码: 1003-1008

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:817/3898954
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司