• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Fuji (Fu, Fuji.) | Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Ma, Jiaqi (Ma, Jiaqi.) | Zhang, Jiahui (Zhang, Jiahui.)

收录:

EI Scopus SCIE

摘要:

Most Simultaneous Localization and Mapping (SLAM) systems highly rely on static environments assumption, leading to low pose estimation accuracy in dynamic environments. Dynamic Visual SLAM (VSLAM) methods have exhibited remarkable advantages in eliminating negative effects of dynamic elements. However, most current methods, only built on traditional indirect VSLAM using hand-crafted features, are still inadequate in utilizing and processing deep features. To this end, this paper proposes a dynamic VSLAM algorithm based on probability screening and weighting for deep features. Specifically, a deep feature extraction module is designed to generate deep features leveraged in the overall pipeline. Then, probability screening and weighting scheme is proposed for processing deep features, through which the dynamic deep feature points are eliminated in a coarse-to-fine manner and the various contributions of static ones is distinguished. Sufficient quantitative and qualitative experiments prove that our proposed method is superior to other counterparts in terms of localization accuracy.

关键词:

Probability screening and weighting Deep feature Visual SLAM Dynamic environments Pose estimation

作者机构:

  • [ 1 ] [Fu, Fuji]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Jiaqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jiahui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Jinfu]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yang, Jinfu]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

MEASUREMENT

ISSN: 0263-2241

年份: 2024

卷: 236

5 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:560/4956113
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司