• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Yandong (Bi, Yandong.) | Jiang, Huajie (Jiang, Huajie.) | Liu, Jing (Liu, Jing.) | Liu, Mengting (Liu, Mengting.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

CPCI-S EI Scopus

摘要:

With the widespread adoption of deep learning, the performance of Visual Question Answering (VQA) tasks has seen significant improvements. Nonetheless, this progress has unveiled significant challenges concerning their credibility, primarily due to the susceptibility of linguistic biases. Such biases can result in considerable declines in performance when faced with out-of-distribution scenarios. Therefore, various debiasing methods have been developed to reduce the impact of linguistic biases, where causal theory-based methods have attracted great attention due to their theoretical underpinnings and superior performance. However, traditional debiased causal strategies typically remove biases through simple subtraction, which neglects the fine-grained bias information, resulting in incomplete debiasing. To tackle this issue, we propose a fine-grained debiasing method named as VQA-PDF, which utilizes the features of the base model to guide the identification of biased features, purifying the debiased features and aiding the base learning process. This method has shown significant improvements on VQA-CP v2, VQA v2 and VQA-CE datasets.

关键词:

Visual Question Answering Language Bias Causal Strategy

作者机构:

  • [ 1 ] [Bi, Yandong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Jiang, Huajie]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jing]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Mengting]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Yongli]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jiang, Huajie]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024

ISSN: 0302-9743

年份: 2024

卷: 14873

页码: 264-277

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:555/4948824
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司