• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Piguang (Wang, Piguang.) | Yu, Wanli (Yu, Wanli.) | Zhao, Mi (Zhao, Mi.) (学者:赵密) | Du, Xiuli (Du, Xiuli.)

收录:

EI Scopus SCIE

摘要:

Wind-wave-current interaction is a phenomenon which is present in many practical engineering situations and vertical earthquakes may have significant influence on the hydrodynamic pressure of seawater in regions of active seismicity. This study is devoted to probe the wave height and hydrodynamic pressure of seawater caused by the joint wind, wave, current and earthquake action based on computational fluid dynamics (CFD) method, where a homogeneous multiphase model based on the noncompressible Reynolds Averaged Navier-Stokes (RANS) equation and the k-epsilon turbulence model implemented in ANSYS-Fluent code was used. First, a two-dimensional (2D) numerical flume excited by wind, wave, current and earthquake loadings was established through the secondary development of a user-defined function (UDF). Subsequent, effects of wind-wave interaction and wind-wave-current interaction on the wave height and hydrodynamic pressure of seawater were investigated. Finally, effects of wave-earthquake interaction and wave-current-earthquake interaction on the wave height and hydrodynamic pressure of seawater were investigated. The nonlinearity of seawater under joint wind, wave, current and earthquake action was also studied.

关键词:

Hydrodynamic pressure Wind-wave-current-earthquake interaction K -epsilon turbulence model CFD RANS equation

作者机构:

  • [ 1 ] [Wang, Piguang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Yu, Wanli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Mi]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Piguang]Beijing Univ Technol, State Key Lab Bridge Engn Safety & Resilience, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Mi]Beijing Univ Technol, State Key Lab Bridge Engn Safety & Resilience, Beijing 100124, Peoples R China
  • [ 7 ] [Du, Xiuli]Beijing Univ Technol, State Key Lab Bridge Engn Safety & Resilience, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhao, Mi]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

OCEAN ENGINEERING

ISSN: 0029-8018

年份: 2024

卷: 305

5 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:562/4959910
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司