• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Junshuai (Zheng, Junshuai.) | Hu, Xiyuan (Hu, Xiyuan.) | Chen, Chen (Chen, Chen.) | Zhou, Yichao (Zhou, Yichao.) | Gao, Dongyang (Gao, Dongyang.) | Tang, Zhenmin (Tang, Zhenmin.)

收录:

EI Scopus SCIE

摘要:

Embodied artificial intelligence (AI) represents a new generation of robotics technology combined with artificial intelligence, and it is at the forefront of current research. To reduce the impact of deepfake technology on embodied perception and enhance the security and reliability of embodied AI, this paper proposes a novel deepfake detection model with a new Balanced Contrastive Learning strategy, named BCL. By integrating unsupervised contrastive learning and supervised contrastive learning with deepfake detection, the model effectively extracts the underlying features of fake images from both individual level and category level, thereby leading to more discriminative features. In addition, a Multi-scale Attention Interaction module (MAI) is proposed to enrich the representative ability of features. By cross-fusing the semantic features of different receptive fields of the encoder, more effective deepfake traces can be mined. Finally, extensive experiments demonstrate that our method has good performance and generalization capabilities across intra-dataset, cross-dataset and cross-manipulation scenarios.

关键词:

Unsupervised contrastive learning Balanced contrastive learning Supervised contrastive learning Deepfake detection

作者机构:

  • [ 1 ] [Zheng, Junshuai]Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, 200 Xiao Lingwei St, Nanjing 210014, Peoples R China
  • [ 2 ] [Zhou, Yichao]Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, 200 Xiao Lingwei St, Nanjing 210014, Peoples R China
  • [ 3 ] [Gao, Dongyang]Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, 200 Xiao Lingwei St, Nanjing 210014, Peoples R China
  • [ 4 ] [Tang, Zhenmin]Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, 200 Xiao Lingwei St, Nanjing 210014, Peoples R China
  • [ 5 ] [Hu, Xiyuan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 210014, Peoples R China
  • [ 6 ] [Chen, Chen]Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IMAGE AND VISION COMPUTING

ISSN: 0262-8856

年份: 2024

卷: 151

4 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:535/4958545
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司