• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Qian (Liu, Qian.) | Zhu, Wenjun (Zhu, Wenjun.) | Zhu, Cui (Zhu, Cui.) | Abuleiti, Abibula (Abuleiti, Abibula.)

收录:

EI Scopus

摘要:

It is usually necessary to obtain task-specific training data in high-resource source languages for cross-lingual text classification. However, due to labeling costs, task characteristics, and privacy concerns, collecting such data is often unfeasible. We focus on how to improve text classification in low-resource languages in the absence of source training annotated data. To effectively transfer resources, we propose a new neural network framework(ATHG) that only make use of bilingual lexicons and high-resource languages's task-independent word embeddings. Firstly, through adversarial training, we map the source language vocabulary into the same space as the target language vocabulary, optimizing the mapping matrix. Then, considering multiple languages, we integrate different language information through a multi-step aggregation strategy. Our method outperforms pretrained models even without accessing large corpora. © 2024 IEEE.

关键词:

Adversarial machine learning Graph embeddings Data privacy Generative adversarial networks Convolutional neural networks Network embeddings

作者机构:

  • [ 1 ] [Liu, Qian]Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhu, Wenjun]Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhu, Cui]Beijing University of Technology, Beijing, China
  • [ 4 ] [Abuleiti, Abibula]Mathematics and Information College of HeTian Normal College, Xinjiang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 735-740

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:412/4965319
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司