• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Guangchao (Wu, Guangchao.) | Wang, Boyue (Wang, Boyue.) | Li, Xiaoyan (Li, Xiaoyan.) | Wang, Qian (Wang, Qian.)

收录:

EI Scopus

摘要:

The rapid spread of fake news on social media has a great impact on people's lives and social stability. Existing multimodal fake news detection methods are very concerned about whether the cross-modal information matches. In order to better understand the relationship between different modalities, this paper proposes the Contrastive Learning Based on Feature Enhancement model(CONLFE), which consists of three core modules: the High-quality Feature Extraction based on CLIP module, the Feature Interaction Based on Transformer module and the Cross-modal Contrastive Learning module. Firstly, the pre-train CLIP model is used to extract richer semantic features from text and images. Then, the attention mechanism in transformer is used to process and optimize the interaction between enhanced uni-modal features. Additionally, by learning matched and mismatched text-image pairs in real news, the representation of different modalities is aligned to a certain extent. This method effectively improves the accuracy and efficiency of multimodal fake news detection. © 2024 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Contrastive Learning Adversarial machine learning

作者机构:

  • [ 1 ] [Wu, Guangchao]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Boyue]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Xiaoyan]Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Wang, Qian]Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2024

页码: 7610-7615

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:529/4957793
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司