• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cheng, Yang (Cheng, Yang.) | He, Haoxiang (He, Haoxiang.) | Sun, Haoding (Sun, Haoding.) | Li, Jinhu (Li, Jinhu.)

收录:

EI Scopus SCIE

摘要:

In order to investigate the seismic performance of reinforced concrete shear walls under multidimensional loading mode and its effect on performance improvement, an embedded optimized steel plate-reinforced concrete composite shear wall is proposed. Based on the design principle that the shear wall could adequately bear multi-dimensional loading and the embedded steel plate could reach the full stress state, the X-shaped optimized steel plate (for in-plane loading mode) and the triangular optimized steel plate (for out-of-plane loading mode) are determined using different optimization methods. The combination scheme of these two plates is utilized in the oblique loading mode. Quasi-static loading tests are conducted on eight typical shear wall specimens, and performance parameters such as hysteresis curve, skeleton curve, ductility, stiffness degradation, strain evolution, and damage evaluation of the specimens are compared and analyzed. In addition, variable parameter analysis is performed using finite element software to compare the strain distribution state of each steel plate. The results indicate that the embedded optimized steel plate-reinforced concrete composite shear wall structure exhibits higher bearing capacity, greater deformation capacity, and superior energy dissipation capacity under different loading angles compared to the tradition reinforced concrete shear walls. This composite structure can provide greater lateral stiffness, and the optimized steel plate can reach the full stress state at all loading angles, effectively reducing the damage of steel bars and concrete. These findings offer a foundation for the study of seismic performance and performance improvement methods for shear wall structures under multi-dimensional earthquake action.

关键词:

Composite shear wall Embedded steel plate Optimized steel plate Performance-based design Full stress criterion Multidimensional loading

作者机构:

  • [ 1 ] [Cheng, Yang]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 2 ] [He, Haoxiang]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Haoding]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jinhu]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China

通讯作者信息:

  • [He, Haoxiang]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF BUILDING ENGINEERING

年份: 2024

卷: 98

6 . 4 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:406/5062253
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司