• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Gang (Yang, Gang.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

A novel neural network model S-LINN was proposed based on the neurons connection and lateral inhibition mechanism in the cortex. Considering the multilayer and span connection of cortex neurons, the model was used to simulate the cerebral cortex structure. The approximation ability was verified throuth the universial approximate analysis. Meanwhile, a supervised algorithm based on the error back-propagation and gradient descent theory was developed to train the network parameters. Simulation results for the abalone age prediction demonstrate that the proposed model can achieve higher accuracy of approximation and generalization with a comparable compact network structure.

关键词:

Backpropagation algorithms Bionics Gradient methods Neural networks

作者机构:

  • [ 1 ] [Yang, Gang]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Gang]School of Electrical and Electronic Engineering, East China Jiaotong University, Nanchang; 330013, China
  • [ 3 ] [Qiao, Jun-Fei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 乔俊飞

    [qiao, jun-fei]college of electronic and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Shanghai Jiaotong University

ISSN: 1006-2467

年份: 2014

期: 7

卷: 48

页码: 965-970

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:160/3605690
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司