• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Decai (Yang, Decai.) | Ye, Qing (Ye, Qing.) | Qu, Chao (Qu, Chao.) | Meng, Fanwei (Meng, Fanwei.) | Wang, Lanyang (Wang, Lanyang.) | Li, Yongqi (Li, Yongqi.)

收录:

EI Scopus SCIE

摘要:

Developing photocatalytic hydrogen evolution technology based on graphitic carbon nitride (g-C3N4, CN) has emerged as a potential solution for the future energy shortage in recent years. Herein, carbon (C) and fluorine (F) co-doping graphitic carbon nitride nanosheets (CFCN) were synthesized via a one-pot co-thermal method without introducing any metal element. Exceptional hydrogen production activity (3.87 mmol/h/g) was achieved by CFCN under visible light irradiation, which was 4.2-fold increase compared to the pristine CN. It could be attributed to the large specific surface area (51.59 m(2)/g) and efficient mass transfer facilitated by the porous sheet-like morphology of CFCN. Additionally, the modification of the band structure and internal charge redistribution were investigated via density functional theory (DFT) calculations, which confirmed there was a unidirectional and fast electron transfer channel from N through the C-4 delocalized large pi bond to F. This creative research uncovered the pivotal role of F/C co-doping in enhancing photocatalytic hydrogen evolution efficacy, offering cutting-edge insights into the design of sustainable and eco-friendly photocatalysts based on metal-free CN.

关键词:

F/C co-doping Delocalized large pi bond Graphitic carbon nitride Charge redistribution Photocatalytic hydrogen evolution

作者机构:

  • [ 1 ] [Yang, Decai]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Ye, Qing]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Qu, Chao]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Meng, Fanwei]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Lanyang]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Yongqi]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

通讯作者信息:

  • [Qu, Chao]Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY

ISSN: 0926-3373

年份: 2024

卷: 361

2 2 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:371/4858765
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司